

[^0]正

1	(i)	$\begin{aligned} & x^{\frac{1}{3}}=2 \\ & x=8 \end{aligned}$	B1	1	(allow embedded values throughout question 1) 8
	(ii)	$\begin{aligned} & 10^{t}=1 \\ & t=0 \end{aligned}$	B1	1	0
	$\begin{aligned} & \text { (iii } \\ & \text { (} \end{aligned}$	$\begin{aligned} & \left(y^{-2}\right)^{2}=\frac{1}{81} \\ & y^{-4}=\frac{1}{81} \\ & y= \pm 3 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	$\begin{aligned} & y=3 \\ & y=-3 \\ & \hline \end{aligned}$
2	(i)	$\begin{aligned} & (3 x+1)^{2}-2(2 x-3)^{2} \\ & =\left(9 x^{2}+6 x+1\right)-2\left(4 x^{2}-12 x+9\right) \\ & =x^{2}+30 x-17 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	3	Square to get at least one 3 or 4 term quadratic $\begin{aligned} & 9 x^{2}+6 x+1 \text { or } 4 x^{2}-12 x+9 \text { soi } \\ & x^{2}+30 x-17 \end{aligned}$
	(ii)	$\begin{aligned} & 2 x^{3}+6 x^{3}+4 x^{3}=12 x^{3} \\ & 12 \end{aligned}$	B1 B1	2	2 of $2 x^{3}, 6 x^{3}, 4 x^{3}$ soi N.B. www for these terms, must be positive 12 or $12 x^{3}$
3	(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=15 x^{4}-\frac{1}{2} x^{-\frac{1}{2}}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3	$\begin{aligned} & 15 x^{4} \\ & k x^{-\frac{1}{2}} \\ & c x^{4}-\frac{1}{2} x^{-\frac{1}{2}} \text { only } \end{aligned}$
	(ii)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=60 x^{3}+\frac{1}{4} x^{-\frac{3}{2}}$	M1 A1	2	Attempt to differentiate their 2 term $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and get one correctly differentiated term $60 x^{3}+\frac{1}{4} x^{-\frac{3}{2}}$
4	(i)		$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	Correct curve in one quadrant Completely correct
	(ii)		$\begin{aligned} & \text { M1 } \\ & \text { A1 } \sqrt{ } \end{aligned}$	2	Translate (i) horizontally Translates all of their (i) $\binom{3}{0}$ 3 must be labelled or stated
	$\begin{aligned} & \text { (iii } \\ & \text {) } \end{aligned}$	(One-way) stretch, sf 2, parallel to the y-axis	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	3	Stretch (Scale) factor 2 Parallel to y-axis o.e. SR Stretch B1 Sf $\sqrt{2}$ parallel to x-axis \quad B2

5	(i)	$x^{2}+3 x=\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	$\begin{aligned} & a=\frac{3}{2} \\ & b=-\frac{9}{4} \quad \text { о.e. } \end{aligned}$
	(ii)	$y^{2}-4 y-\frac{11}{4}=(y-2)^{2}-\frac{27}{4}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	2	$\begin{aligned} & p=-2 \\ & q=-\frac{27}{4} \quad \text { о.е. } \end{aligned}$
	$\begin{aligned} & \text { (iii } \\ & \text { and } \end{aligned}$	Centre $\left(-\frac{3}{2}, 2\right)$	B1V	1	$\left(-\frac{3}{2}, 2\right)$ N.B. If question is restarted in this part, ft from part (iii) working only
	(iv)	$\begin{aligned} \text { Radius } & =\sqrt{\frac{27}{4}+\frac{9}{4}} \\ & =\sqrt{9} \\ & =3 \end{aligned}$	M1 A1	2	$\sqrt{- \text { their' } b^{\prime}-\text { their' } q}$ ' or use $\left.\sqrt{\left(f^{2}+g^{2}\right.}-c\right)$ $3 \quad(\pm 3 \text { scores A0) }$
6	(i)	$\begin{aligned} & y=x^{3}-3 x^{2}+4 \\ & \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{2}-6 x \\ & 3 x^{2}-6 x=0 \\ & 3 x(x-2)=0 \\ & x=0 \quad x=2 \\ & y=4 \quad y=0 \end{aligned}$	B1 B1 M1 M1 A1 A1 $\sqrt{ }$	6	$3 x^{2}-6 x$ 1 term correct Completely correct $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ Correct method to solve quadratic $\begin{aligned} & x=0,2 \\ & y=4,0 \end{aligned}$ SR one correct (x, y) pair www
	(ii)	$\begin{array}{ll} \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 x-6 & \\ x=0 \quad y^{\prime \prime}=-6 & \text { - ve } \max \\ x=2 & y^{\prime \prime}=6 \end{array} \quad \text { + ve min } . l$	M1 B1 B1	3	Correct method to find nature of stationary points (can be a sketch) $\begin{array}{ll} x=0 & \text { max } \\ x=2 & \text { min } \end{array}$ (N.B. If no method shown but both min and max correctly stated, award all 3 marks)
	$\begin{aligned} & \text { (iii } \\ & \text { and } \end{aligned}$	Increasing $x<0 \quad x>2$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	Any inequality (or inequalities) involving both their x values from part (i) Allow $x \leq 0 \quad x \geq 2$

7	(i)	$\begin{aligned} & x=\frac{8 \pm \sqrt{64-44}}{2} \\ & =\frac{8 \pm \sqrt{20}}{2} \\ & =4 \pm \sqrt{5} \end{aligned}$	M1 A1 B1 A1	4	Correct use of formula $\frac{8 \pm \sqrt{20}}{2}$ aef $\sqrt{20}=2 \sqrt{5}$ soi $4 \pm \sqrt{5}$ Alternative method $(x-4)^{2}-16+11=0$ M1 $(x-4)^{2}=5$ $x=4+\sqrt{5}$$\quad$ A1 \quad A1
	(ii)		B1 B1 $\sqrt{ }$ B1	3	+ve parabola Root(s) in correct places Completely correct curve with roots and (0, 11) labelled or referenced
	$\begin{aligned} & \text { (iii } \\ & \text { (} \end{aligned}$	$\begin{aligned} y & =x^{2}=(4 \pm \sqrt{5})^{2} \\ & =16+5 \pm 8 \sqrt{5} \\ & =21 \pm 8 \sqrt{5} \end{aligned}$	M1 M1 A1 $\sqrt{ }$ A1	4	$y=x^{2} \text { soi }$ Attempt to square at least one answer from part (i) Correct evaluation of $(a+b \sqrt{c})^{2} \quad(a, b, c \neq 0)$ $21 \pm 8 \sqrt{5}$

8	(i)	$\begin{aligned} & y=x^{2}-5 x+15 \\ & y=5 x-10 \\ & x^{2}-5 x+15=5 x-10 \\ & x^{2}-10 x+25=0 \end{aligned}$	M1 A1	2	Attempt to eliminate y $x^{2}-10 x+25=0 \quad \mathbf{A G}$ Obtained with no wrong working seen
	(ii)	$\begin{aligned} & b^{2}-4 a c=100-100 \\ & =0 \end{aligned}$	B1	1	0 Do not allow $\left.\sqrt{\left(b^{2}\right.}-4 a c\right)$
	(iii	Line is a tangent to the curve	B1V	1	Tangent or 'touches’ N.B. Strict ft from their discriminant
	(iv)	$\begin{aligned} & x^{2}-10 x+25=0 \\ & (x-5)^{2}=0 \\ & x=5 \quad y=15 \end{aligned}$	M1 A1 A1	3	Correct method to solve 3 term quadratic $\begin{aligned} & x=5 \\ & y=15 \end{aligned}$
	(v)	Gradient of tangent $=5$ $\begin{aligned} & \text { Gradient of normal }=-\frac{1}{5} \\ & y-15=-\frac{1}{5}(x-5) \\ & x+5 y=80 \end{aligned}$	B1 B1 $\sqrt{ }$ M1 A1	4	Gradient of tangent $=5$ $\text { Gradient of normal }=-\frac{1}{5}$ Correct equation of straight line, any gradient, passing through $(5,15)$ $x+5 y=80$

9	(i)	Length AC = $\begin{aligned} & \sqrt{(8-5)^{2}+(2-1)^{2}} \\ & =\sqrt{3^{2}+1^{2}} \\ & =\sqrt{10} \end{aligned}$ $\begin{aligned} \text { Length } \mathrm{AB} & =\sqrt{(p-5)^{2}+(7-1)^{2}} \\ & =\sqrt{(p-5)^{2}+36} \end{aligned}$ $\begin{aligned} & \sqrt{(p-5)^{2}+36}=2 \sqrt{10} \\ & p^{2}-10 p+25+36=40 \\ & p^{2}-10 p+21=0 \\ & (p-7)(p-3)=0 \\ & p=7,3 \end{aligned}$	M1 A1 A1 M1 M1 A1 A1	7	Uses $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ $\begin{aligned} & \sqrt{10} \quad(\pm \sqrt{10} \text { scores A0 }) \\ & \sqrt{(p-5)^{2}+(7-1)^{2}} \end{aligned}$ $A B=2 A C$ (with algebraic expression) used Obtains 3 term quadratic $=0$ suitable for solving or $(p-5)^{2}=4$ $\begin{aligned} & p=7 \\ & p=3 \end{aligned}$ SR If no working seen, and one correct value found, award B2 in place of the final 4 marks in part (i)
	(ii)	$\begin{aligned} & 7=3 x-14 \\ & x=7 \\ & (5,1) \quad(7,7) \\ & \text { Mid-point }(6,4) \end{aligned}$	M1 A1 M1 A1 $\sqrt{ }$	4	Correct method to find x $x=7$ Use $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$ $(6,4)$ or correct midpoint for their AB Alternative method y coordinate of midpoint $=4$ M1 A1 sub 4 into equation of line M1 obtains $x=6$

[^0]: Mark Scheme 4721

